Characterization of Femtosecond Laser Written Waveguides for Integrated Biochemical Sensing
نویسندگان
چکیده
Fluorescence detection is known to be one of the most sensitive among the different optical sensing techniques. This work focuses on excitation and detection of fluorescence emitted by DNA strands labeled with fluorescent dye molecules that can be excited at a specific wavelength. Excitation occurs via optical channel waveguides written with femtosecond laser pulses applied coplanar with a microfluidic channel on a glass chip. The waveguides are optically characterized in order to facilitate the design of sensing structures which can be applied for monitoring the spatial separation of biochemical species as a result of capillary electrophoresis.
منابع مشابه
Multi-wavelength fluorescence sensing with integrated waveguides in an optofluidic chip
Femtosecond-laser-written integrated waveguides enable multi-wavelength fluorescence sensing of flowing biomolecules in an optofluidic chip. Fluorescence from differently labeled biomolecules with distinct absorption wavelengths, encoded by uniquely modulating each excitation beam, is detected by a color-blind photodetector, and the origin of each signal is unraveled by Fourier analysis. Keywor...
متن کاملFemtosecond Laser Written Waveguides for Fluorescence-sensing during Microchip Capillary Electrophoresis
The substitution of conventional bench-top instrumentation by fully integrated lab-on-chip systems continues to be a challenge. The integration of microfluidics and integrated optics in glass is an important step towards this goal, forming the focus of this work [1]. In particular, excitation and detection of fluorescence emitted by labeled biomolecules flowing through a microfluidic channel is...
متن کاملMulti-point, Multi-wavelength Fluorescence Monitoring of DNA Separation in a Lab-on-a-chip with Monolithically Integrated Femtosecond-laser-written Waveguides
Electrophoretic separation of fluorescently labeled DNA molecules in on-chip microfluidic channels was monitored by integrated waveguide arrays, with simultaneous spatial and wavelength resolution. This is an important step toward point-of-care diagnostics with multiplexed DNA assays. © 2009 Optical Society of America OCIS codes: (260.2510) Fluorescence, (280.4788) Optical sensing and sensors.
متن کاملRefractive index profiling of direct laser written waveguides: tomographic phase imaging
We present a technique to measure the refractive index profile of direct laser written waveguides. This method has the potential for straightforward implementation in an existing laser fabrication system. Quantitative phase microscopy, based on the Transfer of Intensity equation, is used to analyse waveguides fabricated with an ultrashort pulsed laser embedded several hundred micron below the s...
متن کاملFemtosecond laser fabrication of integrated optical waveguides and microfluidic channels for lab-on-chip devices
We use a femtosecond laser to fabricate on a glass substrate both microfluidic channels and high quality optical waveguides, intersecting each other. Waveguide-channel integration opens new prospects for in-situ sensing in lab-on-chip devices. Introduction A lab-on-chip (LOC) is a device that squeezes onto a single glass substrate the functionalities of a biological laboratory, by incorporating...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007